PetIGA: High-Performance Isogeometric Analysis

نویسندگان

  • Nathan O. Collier
  • Lisandro Dalcín
  • Victor M. Calo
چکیده

We present PetIGA, a code framework to approximate the solution of partial differential equations using isogeometric analysis. PetIGA can be used to assemble matrices and vectors which come from a Galerkin weak form, discretized with Non-Uniform Rational B-spline basis functions. We base our framework on PETSc, a high-performance library for the scalable solution of partial differential equations, which simplifies the development of large-scale scientific codes, provides a rich environment for prototyping, and separates parallelism from algorithm choice. We describe the implementation of PetIGA, and exemplify its use by solving a model nonlinear problem. To illustrate the robustness and flexibility of PetIGA, we solve some challenging nonlinear partial differential equations that include problems in both solid and fluid mechanics. We show strong scaling results on up to 4096 cores, which confirm the suitability of PetIGA for large scale simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isogeometric finite element analysis of time-harmonic exterior acoustic scattering problems

We present an isogeometric analysis of time-harmonic exterior acoustic problems. The infinite space is truncated by a fictitious boundary and (simple) absorbing boundary conditions are applied. The truncation error is included in the exact solution so that the reported error is an indicator of the performance of the isogeometric analysis, in particular of the related pollution error. Numerical ...

متن کامل

Assessment of Computational Efficiency of Numerical Quadrature Schemes in the Isogeometric Analysis

Isogeometric analysis (IGA) has been recently introduced as a viable alternative to the standard, polynomial-based finite element analysis. One of the fundamental performance issues of the isogeometric analysis is the quadrature of individual components of the discretized governing differential equation. The capability of the isogeometric analysis to easily adopt basis functions of high degree ...

متن کامل

Isogeometric collocation methods with generalized B-splines

We introduce isogeometric collocation methods based on generalized B-splines and we analyze their performance through numerical examples for univariate and multivariate scalarand vector-valued problems. In particular, advection–diffusion and linear elasticity model problems are addressed. The resultingmethod combines the favorable properties of isogeometric collocation and the geometrical and a...

متن کامل

Planar Parametrization in Isogeometric Analysis

Before isogeometric analysis can be applied to solving a partial differential equation posed over some physical domain, one needs to construct a valid parametrization of the geometry. The accuracy of the analysis is affected by the quality of the parametrization. The challenge of computing and maintaining a valid geometry parametrization is particularly relevant in applications of isogemetric a...

متن کامل

Isogeometric Analysis of Coupled Thermo-Mechanical Phase-Field Models for Shape Memory Alloys Using Distributed Computing

A variational formulation and numerical implementation of the phase-field models for shape memory alloys using distributed computing are reported in the paper. The numerical implementation is based on the isogeometric analysis framework, constituting the rich NURBS basis functions. The phase field models are developed using the strain based order parameter and the Ginzburg-Landau theory. The fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1305.4452  شماره 

صفحات  -

تاریخ انتشار 2013